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Abstract

Using Wolff’s single-cluster Monte-Carlo update algorithm, the three-
dimensional O(6)-Heisenberg model on a simple cubic lattice is simulated.
With the help of finite size scaling we compute the critical exponents v, (3,
v and 1. Our results agree with the field-theory predictions but not so well

with the prediction of the series expansions.
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I. INTRODUCTION

The static properties of the three-dimensional classical O(N) ferromagnet have been
studied by high-temperature series expansion techniques [1,2] and by the field-theoretical
formulation of the renormalization group [3]. For O(6) these results disagree with each other
(see table I). We try to resolve this discrepancy by Monte-Carlo (MC) simulations which
are free of systematic errors contrary to high-temperature series and field-theory where
resummation techniques are used.

The main interests of studying the critical behavior of the O(6) model are, first to
compare the results of Monte-Carlo and the high temperature expansions and in particular
to see if the corrections used in this last method, which gives correct results for low NV, are
reliable for higher N; second because in frustrated spin systems the cases O(2) or XY-spins
and O(3) or Heisenberg spins are expected to be quite different from the O(6) case [4].
Before comparing the results of field theory with numerical simulations for the frustrated
case [5] we want to judge the degree of confidence obtainable by both methods in studying
the less controversial ferromagnetic case.

To obtain precise critical exponents we use Wolff’s algorithm [6,7] which is very effective
in reducing critical slowing down. This method allows us to cover the whole region in the
spin space which is much more important in the O(6) case than in the O(2) or O(3) cases.
This is the first use of this algorithm for high N.

In section II we present the model and details of the simulation. The thermodynamic
quantities, their finite size scaling behavior and the methods to calculate the critical expo-
nents are exposed in section III. The results are shown and discussed in section IV and the

section V is devoted to the conclusion.



II. MODEL AND SIMULATION

We choose for the classical O(6) model an isotropic ferromagnet on a three-dimensional

simple cubic lattice. The Hamiltonian for such spin system is given by:
H=JY S8, (1)
(i5)
where S; is a six components classical vector of length unit and J is the ferromagnetic
coupling constant (J < 0). We consider L x L x L (L from 8 to 36) systems with nearest-
neighbor interactions and periodic boundary conditions.

We use Wolft’s single-cluster algorithm [6,7]. It has been demonstrated that this method
is very effective in reducing critical slowing down for the O(N) ferromagnetic spin model
[9-11].

All simulations are carried out at temperatures where the finite size effects [16] are
important: 0.67 < T < 0.77 (For example with size L=10, 14 simulations at different
temperatures have been done). In each simulation, at least 6 millions measurements were
made after enough single cluster updating (1 million) were carried out for equilibration. For
the simulations at 7, 20 millions measurements were made.

We use in this work the histogram MC technique developed by Ferrenberg and Swendsen
[12,13]. From a simulation done at 7Tj, this technique allows to obtain thermodynamic
quantities at 7" close to 7y. Since the energy spectrum of a Heisenberg spin system is
continuous, the data list obtained from a simulation is basically a histogram with one entry
per energy value. In order to use the histogram method efficiently, we divided the energy
range E between -3 and 0 into 100 000 bins.

Our errors are calculated with the help of the Jackknife procedure [14].

IIT. FINITE-SIZE SCALING (FSS)

To begin with, we have to define the quantities we need for our analysis in the FSS

region. For each temperature we calculate the following quantities
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where T is the temperature, M the order parameter, C' the specific heat per site, x the
magnetic susceptibility per site, yo the magnetic susceptibility per site in the high temper-
ature region where the order parameter is zero, V] is a cumulant which we use to obtain the
critical exponent v, U the fourth order cumulant, < ... > means the thermal average.

Note that the order parameter M is defined in this work as

(23 87)%)172

M = SR (7)

where j = 1,...6 and Y, is the sum on all sites (V).
According to the FSS theory [16,17], for a sufficiently large system at a temperature 7’

close enough to the infinite-lattice critical point 7, one has

C = cool(t) + L fo(w) (8)
x=L" fy(z) (9)
X2 =L fy,(x) (10)
Vi=L" fi(x) (11)
<M > =LP" fy(z) (12)
where
z =tLY" = (T — Tc) LM (13)

is the temperature scaling variable. Since we will be interested only in zero-field properties,

z is the only relevant thermodynamic variable. f; are some unknown functions.
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From these equations we can prove that the location of the extrema of C', x, and V; vary

asymptotically as
Trae(L) =T, + aL ™", (14)

Because each thermodynamic function has its own scaling function, a depends, in magnitude
and sign, on the particular function measured.

In addition, if z is constant, i.e. if T =T, (x =0) or T =T, + aL™* (x = a) we have

C = coo(t) + L go (15)
x=L" g, (16)
Xo =L gy, (17)
Vi =LY % (18)
<M> =L"P"gy (19)

where the g are constants independent of temperature and size L. So we have several
possibilities to calculate 7, and the critical exponents:

1. We can look at the extrema of C, x (Fig. 7) and V; and get the values of T,,,,,(L) and
of the maximum for each quantity. We can fit this last quantities with (15-19) and find the
critical exponents /v, v/v, 1/v (Fig. 1-3). Usually the result for a//v is not very accurate
because of the presence of ¢y (t). With the values of v and 7},4,(L) we can find 7, using
(14) (see Fig. 4).

Now we will introduce another method to find the critical exponents, in particular to find
(. It is not necessary to be at the maximum of the quantity in order to obtain the behavior
(15-19) which is very useful in the case of the magnetization < M > and x, as they do not
have a maximum. To obtain the behavior (15-19) we must have the temperature 7" as (14).
For this we have two solutions:

a. T = T, of one quantity and at this temperature all the other quantities have the
behavior (15-19)

b. T is like U=constant, indeed



U = fu(z) + corrections (20)

and if we do not include the corrections, x must be constant i.e. all the quantities have the
behavior (15-19).

The errors in these two cases will be greater than if we are at the maximum of the quantity we
want to fit with (15-19). Indeed we do not include the corrections and we have an uncertainty
about the temperature then an error in the value of the quantity at this temperature. In
the case where we are at the maximum this is not so important due to the function is flat
close to it. An example of this can be found in the results (22-24) and we can compare the
errors between (22) and (23) where one is the result of x at his maximum (22) and one is
the result of x, at the same temperature (23). We can see that the error in the last case is
more important than in the first. Nevertheless this is the best way to obtain 3/v if we use
only the first method. The second method we develop hereafter include the corrections.

2. Another possibility to find 7, is to use the FSS of U. We can record the variation of U
with 7" for various system sizes and then locate the intersection of these curves. We compare
the value of U for two different lattice sizes L and L' = bL, making use of the condition [15]

Uns

A 1. (21)
Because of the presence of residual corrections to finite size scaling, one actually needs to
extrapolate the results of this method for (Inb)~! — 0 (Fig. 5-6). With the value of T, we
can find the critical exponents with (15-19).

3. A third way to find the critical exponents and 7, together is to try to collapse for
each quantity the curves of all the sizes using (8-12): We have, for example, y = L/" f, ()
with £ = tL'/Y = (T — Tc)L'/” and if we draw xL™/" as function of z with the good value
for T, 1/v and ~/v, all the curves should collapse (Fig. 8). Unfortunately this method does
not give very accurate results because we have too many parameters to fit (3, i.e T,, v/v
and 1/v).

We will introduce now a better way to find the critical exponents. We can draw the quantities

< M > LAY, xL™/7 ... not as function of x but as function of U. Indeed U varies as (20)
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and all the curves for different sizes L must collapse (Fig. 9). This way we have only one
unknown parameter /v for M, /v for x and x», 1/v for V;, and the results will be much
more accurate. The errors are larger than those of the method 2 because we do not include
the corrections. To find 7, now, we use the value of v found and we plot U in function of x:

T, is the only unknown parameter.

IV. RESULTS

First we estimated the critical exponents with method 1 described in the previous section.
We measured the value of the maximum of y and V; and plotted in Fig. 1 and 3, in a log-log
scale these values as function of the size L. We obtain v/v and 1/v from the slope of a

straight line fit. Curve 3 in the Fig. 1 gives
T _
= 1.970(6) . (22)

We can have another estimate of v/v if we plot x, at the estimated temperature (7)X,,)

where x is maximum. This is shown by curve 2 in the same figure. The slope of the linear

fit is
T _
1 =1.963(12) . (23)
v

The value of the error is greater than for y because the uncertainty about 7X . The value

max-*

of /v can be determined in the same way in plotting the logarithm of the magnetization
obtained at T, as function of the In(L). The value of the slope gives (bottom curve of

Fig. 2)

g = 0.524(7) . (24)

The value of v is obtained through the same method. For V; we can take the value at 7%,

or at T"

mazx-*

In the Fig. 3 where we have plotted In(V}) as function of In(L) the two values are

nearly identical because TX,, is close to T, and V; is flat between the two temperatures.

From the value at T)X,, we obtain (curve 2 in Fig. 3)
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v = 0.784(9) (25)

and with the value V™% (i.e. at TV. ) (curve 1 in Fig. 3)

v = 0.785(7). (26)

We can now find the critical temperature with the value of v just calculated. We know
that the maximum of the thermodynamic quantities varies as eq. (14). In plotting for each
quantities T)ne, as function of L~/ with v =0.785 we will obtain an estimate of the 7.

This is done in Fig. 4. We notice that the TX = have the smallest error bars whereas the

T¢ . are not precise. If we fit the three curves, combining the results, the estimate of 7}, is

T, = 0.7000(2). (27)

Another way to find T, is to follow method 2 of the previous section. In Fig. 5 U is
plotted as function of the temperature for different sizes from L = 10 to L = 36. From this

data we extrapolate the value of 7, in Fig. 6 and obtain for 7,

T. = 0.7001(1) (28)
which agrees with the value estimated before. We can estimate U at T, (U*)

U* =0.6477(4). (29)

With the value of 7, (28) we do some log-log fit to find the critical exponents. It should be
noticed that this value of T, takes care of corrections which have not been included before
in the values of T},4;(L). We obtain from V; (Fig. 3 bottom curve), from x (Fig. 1 bottom

curve), from y, (Fig. 1, curve 1), and from < M > (Fig. 2, curve 1)

0.786(5) (30)
(6) (31)
(7) (32)

= 0.520(4). (33)

NI jov 2 o
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All our errors include the influence of the uncertainty in our estimate for 7.

Now we use the method 3. In the Fig. 7 the susceptibility x is shown with different
sizes as function of the temperature. In the Fig. 8 we have plotted the quantity xL /" as
function of (7' — T,)L'/¥ for the values of the exponents and 7, found before. We can see
that all curves for different sizes collapse in one curve. Meanwhile it is better to plot these
curves as function of U. Fig. 9 shows xL~"/" for /v = 1.969. We can see that the curves

collapse in one curve. With this method we obtain
T _
- =1.970(15). (34)
v

This value is similar to those found before with a greater error bar. A similar method can
be employed for < M >, x, X2 ... and we recognize the same exponents as before with

greater error bars.

V. CONCLUSION

Our results are given in table I. The values of o and n are derived from the scaling

relations

dv =2 — « (35)
2

—=2-n. 36
» y (36)

In order to check the hyperscaling relation (35) we take the relation 23/v + v/v = d which

is derived from (35) and o + 26 4+ v = 2. We obtain with our Monte Carlo results

B, _
2=+ = 3.009(13) (37)

which is indeed not far from d = 3. Also listed in the table are the results of series expansions
[1,2] and field theory [3].
Our results agree very well with the field theoretical ones. The agreement is not so

good with the results of the high-temperature expansions (HT). Our value of the critical



temperature 7, agrees with the HT unbiased value but not with the of #-biased. It is to be
noted that in the unbiased case the exponents are closer to ours than for the #-biased case
where sub-leading scaling corrections have been included. We believe that the results of the
field theory are more accurate than those of the high temperature expansions which give

systematically larger exponents for v and ~.
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TABLES

v ¥ n B a T
this work 0.786(5)| 1.548(14)| 0.031(5)| 0.409(6)| -0.358(15)| 0.7001(1)
Field theory (6-loops ) [3] 0.790 1.556 0.031 0.407 -0.370
HT sc unbiased [1,2] 0.804(3)| 1.582(5) 0.69999(3)
HT sc 6-biased [1,2] 0.821(3)| 1.614(5) 0.69981(3)
HT bcc unbiased [1,2] 0.796(3)| 1.566(4)
HT bce 6-biased [1,2] 0.819(3)| 1.608(4)

TABLE I. Values of the critical exponents and the critical temperature for O(6) ferromagnetic

spins on cubic lattices obtained by various methods
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FIGURE CAPTIONS

Fig. 1: Values of the susceptibilities xy and x, as a function of L in a In-In scale. Curves

1 and 2 are for x2 at T, and T)%,, respectively and curves 3 and 4 for x at 7%, and T;. The

slopes of curves 1, 2, 3, 4, give v/v= 1.965(7), 1.963(12), 1.970(6), 1.969(6). Size L=8 is
not included in the fit. The estimated error bars are smaller than the symbols.

Fig. 2: Value of < M > as a function of L in a In-In scale at 7%, (curve 1) and 7,
(curve 2). The value of the slopes gives 3/v. We obtain 0.520(4), 0.524(7) respectively. Size
L=8 is not included in the fit. The estimated error bars are smaller than the symbols.

Fig. 3: Value of V; as a function of L in a In-In scale at 7Y% (curve 1), TX . (curve 2)
and T, (curve 3). The two first curves are quasi equal (see text). The value of the slopes
gives 1/v and we obtain v= 0.785(7), 0.784(9), 0.786(5) (up to down). Size L=8 is not
included in the fit. When not shown, the estimated error bars are smaller than the symbols.

Fig. 4: Size dependence of the finite-lattice effective critical temperatures estimated
from Vi, x and C for L=8, 10, 12, 14, 16, 18, 20, 30. The lines are fit to Eq. (14) with
v=0.785. The value of T, found is 0.7000(2). The size L=8 is not included in the fit. When
not shown, the estimated error bars are smaller than the symbols.

Fig. 5: Binder’s parameter U as function of the temperature for different sizes L (in the
left part of the figure, from L=8 - down- to L=36 - up). The arrow shows the estimated
critical temperature 7.

Fig. 6: Estimated T, plotted vs inverse logarithm of the scale factor b = L'/L . For clar-
ity, only the results for L=12,14,16 are shown. The estimated temperature is 7,=0.7001(1).

Fig. 7: x as function of the temperature for different sizes (from up to down L= 36, 30,
24, 20, 18, 16, 14, 12, 10).

Fig. 8: xL™/" as function of (T — T,)L*" with v/v=1.969, T,=0.7001 and 1/v=0.786
for different sizes L. All the curves collapse to one.

Fig. 9: xL™"/" as function of U with ~/v=1.969, for different sizes L. All the curves

collapse to one. There is now only one unknown parameter (v/v).
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