The fastest generic algorithms for any distributions
Heat Bath and Hasting Methods for Spin Systems
|
|
|
|
|
|
|
|
|
Blume-Capel model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Gauge theory |
|
|
|
|
= eh.x.dx |
|
|
|
.e h.x.cos(Pi.z)- x2- landa.(x2-1)2 = e h.x.y - x2- landa.(x2-1)2.dx.dy.du |
|
|
|
= sqrt(1-x2).eh.x.dx |
|
|
|
= (1-x2)(N-3)/2.eh.x.dx |
|
|
|
= (1-x2)(N-3)/2.dx... |
|
|
|
.sinN-3(Pi.z).dz... = rN-1.dr.(1-x2)(N-3)/2.dx... |
|
|
|
= (sqrt(1-x2))H-1.xM.dx |
x → [-1<xini:xfin<1[ H=real≥1 M=even integer |